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Abstract. The low-temperature thermal expansion of the heavy-fermion system with the
formula Ce1−xLaxRu2Si2 (x = 0 andx = 0.05) close to the magnetic instability is analysed
in terms of the renormalization group and self-consistent renormalized spin-fluctuation models.
The Gr̈uneisen parameter calculated using the renormalized Fermi temperature is compared with
the effective one which is determined from thermal expansion measurements and previously
obtained specific heat data.

1. Introduction

Properties of metallic heavy-fermion systems near a magnetic instability have attracted
strong interest, as non-Fermi-liquid behaviour has been expected when a magnetic–non-
magnetic transition occurs atT ∼ 0 K. In particular, Ce1−xLaxRu2Si2 [1], CeCu6−xAux [2],
and Ce(Ni1−xCux)2Ge2 [3], around their critical concentrationxc, have been extensively
studied, and theoretically several approaches have been proposed: the renormalization group
(RG) model for quantum critical phenomena [4], the self-consistent renormalized spin-
fluctuation (SCR) model [5], the disordered Anderson lattices model [6], etc. Recently [1],
the RG and SCR models have been successfully compared with experiments (specific heat,
resistivity, thermal expansion, NMR, and inelastic neutron scattering) on Ce1−xLaxRu2Si2
for x = 0, 0.05 and 0.75. It was concluded that the so-called ‘non-Fermi-liquid behaviours’
can be understood as properties of an extended crossover regime to the Fermi-liquid ground
state. It seems that experiments at very low temperature are necessary to distinguish a true
non-Fermi-liquid ground state.

The aim of this study is to discuss the volume thermal expansionαV and the Gr̈uneisen
parameter� of the renormalized Fermi temperature around the magnetic instability in
Ce1−xLaxRu2Si2. The thermal expansionαV is sensitive to anomalous behaviours because it
is a pressure-differential quantity. Thus a crucial comparison between theory and experiment
can be expected forαV . The Gr̈uneisen parameter is remarkable because it can show a
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Figure 1. The phase diagram for antiferromagnetic instability based on the SCR and RG models.
The measure for the proximity of the magnetic instability isy0 for the SCR model andδ for the
RG model.TI for the RG model is effectivelyδT ∗ (=rT ∗) in this study (see section 3.1).

divergent behaviour at the magnetic instability atT = 0 K. Usually, this parameter is
estimated experimentally using the specific heat and thermal expansion for convenience; a
more precise framework is given based on the RG and SCR models.

In the Ce1−xLaxRu2Si2 system, the magnetic–non-magnetic transition appears at around
xc = 0.08 [1]. We have measuredαV down to low temperatures (∼0.3 K) and analysed
� for Ce0.95La0.05Ru2Si2 (x = 0.05) and CeRu2Si2 (x = 0), which are in the paramagnetic
regime near the magnetic instability (figure 1). The experimental methods are described in
reference [7].

2. The scaling form of the free energy, and the Gr̈uneisen parameter

It is well known that if the free energyF is scaled through one parameterTs as in the
impurity Kondo model:

F = T8(T /Ts) (1)

then the effective Gr̈uneisen parameter�α,C ≡ VmαV /κC (Vm: unit volume; κ: comp-
ressibility−V −1 ∂V/∂P ; C: specific heat) is constant, i.e.αV is proportional toC, and the
Grüneisen parameter forTs , �Ts ≡ −∂ ln Ts/∂ lnV , is identical with�α,C .

In the SCR model [5],F takes the scaling form

FSCR = t81(t, y1, y0) (2)

where

t = T

T0

and wherey1 andy0 are dimensionless independent parameters which can be determined by
fitting experimental quantities such as the specific heat. The parametery1 = 2JQ/(TAπ2) is
connected with the RKKY exchange energyJQ, y0 is proportional to the inverse staggered
susceptibility atT = 0 K through the relationy0 = 1/(2TAχQ(0)), T0 is defined as
T0 = TA0LχL/π (0L: local (q = 0) spin-fluctuation energy;χL: local spin susceptibility),
andTA is defined asTA = Aq2

B/2 (A is the strength of the RKKY dispersion around the
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Table 1. Parameters for proximity to the magnetic instability [1], and the Grüneisen parameters
for TI for Ce1−xLaxRu2Si2.

(a) The SCR model
x = 0 x = 0.05

y0 0.31 0.1
y1 1.6 1.33
T0 (K) 14.1 14.7
TI = y0T0 (K) 4.4 1.5
�TI ,SCR 4.0× 102 8.0× 102

(b) The RG model
x = 0 x = 0.05

δ 0.6 0.27
T ∗ (K) 12.6 12.6
TI = δT ∗ (K) 7.6 3.4
�TI ,RG 1.0× 102 2.6× 102

staggered wave vectorq = Q: Aq2 = JQ − JQ+q , andqB is the effective zone-boundary
vector).

In the RG model [4, 8],F takes the scaling form

FRG = t5/282

(
r

t
,
ut3/2

r

)
(3a)

with

r = δ + ut3/283,2

(
r

t

)
t = T

T ∗

(3b)

whereδ, T ∗, andu are independent parameters. The parameterδ is the control parameterr
at 0 K (depending on tuning quantities such as the doping concentration or pressure),u is the
coefficient of the dangerously irrelevant operator, andT ∗ is the microscopic characteristic
temperature (roughly an effective Fermi temperatureTF ). The explicit forms of the scaling
functions81, 82, and83,2 are given in references [5] and [8]. As shown in the phase
diagram (figure 1), quantum critical phenomena are expected wheny0 (for the SCR model)
or δ (for the RG model) reaches 0 atT = 0 K. For Ce0.95La0.05Ru2Si2 (x = 0.05) and
CeRu2Si2 (x = 0), the values ofy0 and δ obtained [1] from fits to specific heat data [9]
are presented in table 1. In the case of antiferromagnetic interactions, the characteristic
temperature for the Fermi-liquid regionTI is proportional toy0T0 for the SCR model and
rT ∗ for the RG model. We focus on the Grüneisen parameter forTI : �TI ≡ −∂ ln TI /∂ lnV .

The one-parameter scaling law is generally fulfilled neither in the framework of RG
models nor in that of SCR models, because all of the parameters of the free energy can
depend on the volume; thus theoretically�α,C is not independent of the temperature, and�TI
differs from�α,C , in agreement with an observation of a non-constant experimental�α,C
for Ce1−xLaxRu2Si2. Since the proximity to the instability depends strongly on the volume
in heavy-fermion systems,y0 and δ (measures of the proximity) will have a considerable
volume dependence. However, the pressure dependence ofT0, y0, y1, T

∗, δ, andu is not
yet clearly given in the two models, so some assumptions are necessary for calculating the
T -dependence ofαV which is no longer proportional toC.



4920 S Kambe et al

3. Thermal expansion

3.1. The RG model

In the calculations ofαV , we assume thatu = 0 (i.e. r = δ) and ∂T ∗/∂P = 0. It should
be noted that∂/∂P means∂/∂P (P = 0 atm) here, andαV is calculated atP = 0 atm.
On the basis of the specific heatγ = C/T formula for the crossover region [8] and the
thermodynamic relations for the entropyS (S = ∫ C/T dT andαV = −V −1 ∂S/∂P ), the
following equation is obtained:

αV = T ∗

2Vm

∂r

∂P
I (r, t) (4)

where

I (r, t) ≡ c
∫ ∞

0
dε
∫ 1

0
dt

ε2

sinh2 ε
t1/2

{
r

t
+
((

r

t

)2

+ 4ε2

)1/2
}−1/2

×
{

1

t
+ r

t2

((
r

t

)2

+ 4ε2

)−1/2
}

where the same notation as in equation (3) is used;c is a constant related to the microscopic
length, andr is related tox by r = δ = (xc−x)/x∗ (xc andx∗ being the critical and scaling
concentrations) [8]. The parametersc, T ∗, xc, andx∗ are assumed to be independent ofx

aroundxc, and the estimates used are those obtained previously [1] by fitting the specific
heat data [9] down to 100 mK for the Ce1−xLaxRu2Si2 series;c = 0.32 J K−2/mol Ce,
T ∗ = 12.6 K, xc = 0.09, andx∗ = 0.15.

Figure 2. Experimental values of the thermal expansionαV are compared for the RG and SCR
models. Experiments: closed circles:x = 0.05 [7]; open circles:x = 0. Fitting curves: solid
lines: the SCR model; dashed lines: the RG model.

Since∂T ∗/∂V = 0, the Gr̈uneisen parameter forTI (=δT ∗), �TI ,RG, is proportional to
∂δ/∂P :

�TI ,RG = −
V

TI

∂TI

∂V
= 1

κδ

∂δ

∂P
. (5)
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Now let us compare the RG model with experiments.I (r, t) can be calculated explicitly
using the parameters estimated previously from the specific heat measurements, while
∂r/∂P = ∂δ/∂P is a T -independent adjustable parameter in equation (4). If we optimize
∂δ/∂P , an agreement between the model and experiments forαV (figure 2) is obtained
considerably belowTI (=δT ∗) for bothx = 0.05 (TI = 3.4 K) and forx = 0 (TI = 7.6 K).
The deviation forTI < T < T ∗ may reflect the simplicity of our assumptions, while
aboveT ∗ the RG model does not describe the excitations correctly. The value of�TI ,RG
is estimated as 1.0× 102 for x = 0 and 2.6× 102 for x = 0.05 from equation (5), using
κ = 0.95×10−11 m2 N−1 andVm = 5.19×10−5 m3 mol−1. As expected,�TI ,RG increases
as the magnetic instability is approached.

3.2. The SCR model

The characteristic quantities of the SCR model [5] are the renormalized inverse susceptibility
at q = Q: y ≡ 1/(2TAχQ), and the parameters in equation (2). Previously, the values of
TA, T0, y0, andy1, and theT -dependence ofy have been determined [1] for Ce1−xRuxLa2Si2
from specific heat and susceptibility measurements [1, 9]. On the basis of these parameters,
αV has been fitted with the SCR model [1] using the following relations [10]:

ωm = 1V

V
= 3

5

DQκ

FsχQ

αV = 1

V

dV

dT
= dωm

dT
= 3

π2DQκ

JQ

dy

dt

(6)

whereDQ and Fs (=2JQTA/5π2T0) are the magnetovolume constant atq = Q and the
mode–mode coupling constant, respectively.

However, a different expression forαV can be deduced by integratingC/T from the
SCR model [5]:

C

T
= 3

π

∂2

∂T 2

∑
q

T

∫ ∞
0

dλ
1

eλ − 1
tan−1 λT

0q
(7)

where

0q = 2πT0(y + x2) x = q/qB
and

αV = − 1

V

∂S

∂P
= − 1

V

∂

∂P

∫ T

0

C

T
dT = 6

VmT0y1

(
∂2(T0y)

∂t ∂P
(y − y0)+ ∂(T0y)

∂P

dy

dt

)
. (8)

In the calculation ofαV , we assume here∂T0/∂P = 0, and that∂y/∂P is independent of
the temperature, i.e.∂y/∂P = ∂y0/∂P . On these assumptions, the first term of equation
(8) vanishes, leading to an expression similar to equation (6):

αV = 6

Vmy1

∂(y0)

∂P

dy

dt
. (9)

The comparison of equations (6) and (9) leads to the following relation:

DQ = −TA ∂(y0)

∂V
. (10)

The Gr̈uneisen parameter forTI = y0T0, �TI ,SCR, is given by

�TI ,SCR ≈ −
V

y0

∂(y0)

∂V
= 1

κy0

∂(y0)

∂P
. (11)
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That is, the assumption of aT -independent∂y/∂P corresponds to the case of aT -
independent�TI ,SCR.

The fit of αV to equation (9) is obtained using dy/dt determined from the specific
heat data, and an optimized∂y0/∂P [1]. As shown in figure 2, a good agreement with
experiment is obtained belowTI (=y0T0: 1.5 K for x = 0.05, and 4.4 K forx = 0 [1]).
The corresponding�TI ,SCR is estimated as 4.0× 102 for x = 0 and 8.0× 102 for x = 0.05.
These values are somewhat larger than those of the RG model, because the proximity is
regarded as stronger in the SCR model, i.e.y0 < δ. The better representation of theαV -data
in the SCR approach than in the RG approach may reflect the differences in the respective
assumptions made in the calculations ofαV . Therefore it is difficult to decide on the validity
of the two models at the present stage.

Figure 3. Comparisons of the effective Grüneisen parameter. Experiments: closed circles:
x = 0.05; open circles:x = 0. Calculated curves: solid lines: the SCR model; dashed lines:
the RG model.

4. Discussion

The present analysis treats only the intersite effect, since it dominates the thermal properties
near the instability. The local characteristics such asT ∗ and T0 are assumed to be
independent of pressure; however, these assumptions are rather imprecise because usually
local (intrasite) properties such as the Kondo effect depend on the pressure and doping
concentration. Obviously a model which includes valence fluctuations is necessary for
treating a modification of the local characteristics. AlthoughT0 has been found to be
independent ofx, the difficulty of the constantT ∗ for a wide range ofx in Ce1−xLaxRu2Si2
has already been mentioned [1], implying that the assumption that∂T ∗/∂P = 0 is suspect
as compared to the assumption that∂T0/∂P = 0. This difference may explain the better
representation ofαV in the SCR model.

In the SCR model [5], the pressure dependence ofy0 is related to the resistivityρ, since
the Fermi-liquid-contribution termI in the resistivity (ρ = ρ0 + IT 2) varies asI ∼ y−0.5

0
around the magnetic instability, and in addition a recent calculation [11] predicts a weaker
y0-dependence ofI in an off-critical case like CeRu2Si2. However, the Gr̈uneisen parameter
�I ≡ −∂ ln(I−1/2)/∂ lnV for CeRu2Si2 is found to be 180, andP -independent up to 6 kbar
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[12], which leads to a strongery0-dependence ofI :

I ∼ y−2�I /�TI ,SCR
0 = y−0.9

0 . (12)

The dominant mechanism here may be the variation of the local Kondo temperature, which
will exponentially change with the pressure according to the linear shift of the 4f level
relative to the Fermi level. Obviously more experiments in the vicinity of the critical point
are needed.

Let us compare the experimental results with the calculated�α,C using the values ofαV
determined (figure 3). As shown in figure 2, the behaviour of the calculated�α,C at high
temperatures is quite different for the two models; however, this feature depends strongly on
the assumptions forT ∗, T0, ∂r/∂P , and∂y/∂P . At low temperatures, the observedαV and
�α,C can be well fitted using the assumption of the finiteT -independent�TI ,RG or�TI ,SCR,
indicating that these compounds are still described by the Fermi-liquid picture in agreement
with the previous analysis [1]. More theoretical investigations for theT -dependence of
∂r/∂P and∂y/∂P are needed to discussαV in the crossover regime.

Whenδ or y0 approaches 0 asT → 0 K, �TI and�α,C are related through the following
approximations respectively for the RG and SCR models:

�α,C ≈ nδ1/2(1− (t/δ)2)−1�TI ,RG (13)

where

n = 6γ0T
∗N−1 ≈ O(1)

and

�α,C ≈ y0y
−1/2�TI ,SCR (14)

whereγ0 = C/T (T → 0 K), andN is the number of components for the ordering field
(the constantc is proportional toN ) [8]. Therefore, at the critical point,�TI ∼ y−1

0 , δ−1

and�α,C ∼ y−1/2
0 , δ−1/2 are expected to diverge, whileC/T remains finite andαV → 0

asT → 0 K for both models. Further studies concentrating on the divergent behaviour of
�TI at the critical pressure or critical concentration at very low temperatures will be quite
useful for clarifying the critical behaviours. It is expected that�α,C will be quite sensitive
to Kondo disorder, and it may be suspected that the presence of disorder could prevent
the divergence of�α,C at the magnetic instability. It is worth noting that the so-called
metamagnetic phenomenon for CeRu2Si2, which is accompanied by a large volume effect,
is strongly smeared out by the substitution of La or Ge [13]. Finally, it should be noted that
the present considerations can be applied to ultrasound measurements such as were recently
performed on CeCu6−xAux [14].
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